NEAR-INFRARED LIGHT APPLIED TO THE BRAIN: A STUDY OF PHOTONS' PROPAGATION USING MONTE CARLO SIMULATIONS

Dole, M.¹, Bleuet, P.², Auboiroux, V.², Billères, M.¹, Mitrofanis, J¹. 1 Univ. Grenoble Alpes, FDD-Clinatec, 38000 Grenoble, France 2 Univ Grenoble Alpes, CEA-Leti, Clinatec, 38000 Grenoble, France

1. Introduction

Alzheimer's disease : still incurable neurodegenerative disease

\rightarrow Transcranial photobiomodulation (tPBM)

Consists of red and Near Infrared (NIR) light applied transcranially to the brain (λ =600-1000nm) for the rapeutic objectives

How much energy is deposited in each brain region?

Monte Carlo = probabilistic method to model light propagation in

3. Results

- \Rightarrow Light deposition attenuated exponentially following Beer's Lambert Law
- \Rightarrow Red and NIR lights were mainly deposited in superficial regions

3D turbid media (Prahl et al. 1989)

- \Rightarrow Use Monte Carlo simulation to simulate NIR light propagation in the brain
- \Rightarrow Previous work modelling a single source showed that NIR light can go through 3-4cm **deep** (*Li et al. 2017*)
- \Rightarrow Examine light propagation using an existing multisource device
- \Rightarrow Examine the total quantity of light deposited region by region
- \Rightarrow Compare 1 young and 1 aged healthy brain

- \Rightarrow Photons were found until ~ 4cm below the scalp surface
- **Total Energy deposition (J)** for a 12-min tPBM session (young brain)

Z. Wethods

- \Rightarrow Tested wavelengths 670 / 810nm
- \Rightarrow Segmentation of T1w MRI images: GM, WM, CSF, skull, scalp
- \Rightarrow Each tissue has its combination of optical coefficients
 - μ_a = absorption coeff. μ_s = scattering coeff. *n* = *refractive index* **g** = anisotropy factor

\Rightarrow Simulation using mcxyz (Jacques et al. 2019):

- Launch a photon packet (determine coordinates / direction)
- Determine step size and move photons according to angle = actualize coordinates
- Remove absorbed weight verify if weight is below cutoff
- If no: det. step size and move photons to the next interaction

	670nm	WM	GM	CSF	skull	scalp
	μа	0.07	0.02	0.004	0.0208	0.
efficient	μs	40.1	8.4	0.3	х	х

²⁰Wer 670nm: 345mW/LED – Optical power 810nm: 267mW \Rightarrow 90,21% of 670nm light and 82,81% of 810nm absorbed in the light scalp

> \Rightarrow 6,42% of 670nm light and 8,42% of 810 nm light absorbed in the skull

 \Rightarrow Light globally propagated similarly in young and aged brains

 \Rightarrow Slight differences in the repartition of light deposition in the frontal regions

Figure 3. Normalised energy deposition in log (W/mm3 per Watt applied at each source region by region, in the young (dark blue) and old (light blue) brai

\Rightarrow Red and NIR light is able to penetrate inside the brain

 \Rightarrow Superficial regions of the cortex can be targeted by tPBM, not deep regions

- \Rightarrow Light deposition is **not homogeneous** across brain lobes:
 - Effect of the localisation of LEDs sources onto the head?
 - Effect of scalp /skull thickness?

 \Rightarrow Limitation of this study: vasculature and hairs were not modelled

References

Cassano P. et al. (2019). Selective photobiomodulation for emotion regulation: model-based dosimetry study. Li T. et al. (2017). Photon penetration depth in human brain for light stimulation and treatment: a realistic Monte Carlo simulation study. Yuan Y. et al. (2020). Transcranial photobiomodulation with near infrared light from childhood to elderliness: simulation of dosimetry. Jacques, S. (2019). <u>https://omlc.org/software/mc/mcxyz/index.html</u>

Prahl, S.A. et al. (1989). A Monte Carlo model of light propagation in tissues

This work is supported by a funding from Covea Foundation